• Product

      Product

      Application Security Platform

      Use Cases

      Shift Left & DevSecOps Supply Chain Security Software Bill of Materials (SBOM) Container Runtime Security & Compliance Cloud Native Application Security
      What is Deepfactor and How Does It Work?
      4-Minute Video
      What is Deepfactor and How Does It Work? >
  • Pricing
    • Pricing Plans
  • Resources

      Resources

      All Resources Next-Gen AppSec Series Case Studies Demos Videos Glossary Webinars Whitepapers Workshops Latest Blogs Documentation
      Next-Gen AppSec Series—Deepfactor SCA: 80% Less Noise, 50% Lower Cost
      Next-Gen AppSec Series
      Next-Gen AppSec Series—Deepfactor SCA: 80% Less Noise, 50% Lower Cost >
  • Company
    • About
    • Leadership
    • Partners
    • News and Events
    • Careers
    • Contact Us
  • LOGIN
Cisco Logo Deepfactor is now part of Cisco | Learn more
Learn more
Deepfactor Logo
  • Product

      Product

      Use Cases

      Application Security Platform

      Use Cases

      Shift Left & DevSecOps Supply Chain Security Software Bill of Materials (SBOM) Container Runtime Security & Compliance Cloud Native Application Security
      What is Deepfactor and How Does It Work?
      4-Minute Video
      What is Deepfactor and How Does It Work? >
  • Pricing
    • Pricing Plans
  • Resources

      Resources

      All Resources Next-Gen AppSec Series Case Studies Demos Videos Glossary
      Webinars Whitepapers Workshops Latest Blogs Documentation
      Implement Effective Next-Gen Container Runtime Security in Kubernetes and Cloud Native Apps
      Whitepaper
      Implement Effective Next-Gen Container Runtime Security in Kubernetes and Cloud Native Apps >
  • Company
    • About
    • Leadership
    • Partners
    • News and Events
    • Careers
    • Contact Us
LOGIN
Deepfactor's Application Security Platform will no longer be offered for sale or renewal effective September 20, 2024.

Getting Started

  • QuickStart Guide
  • Install Deepfactor CLI
  • Deepfactor Support Matrix

Tutorials

  • SBOM & SCA
    • Artifact Releases
    • Deepfactor Scanner
    • Integrate Deepfactor scanner in your CI/CD pipelines
    • Scanning container images from private registries using Deepfactor CLI
    • Scan container images in K8s cluster
      • Scanning images from private registries in K8s cluster using Deepfactor
      • Scanning container images from private registries with basic authentication support in K8s
      • Scanning container images from private AWS Elastic Container Registry (ECR) in EKS on AWS Fargate
      • Scanning container images from private AWS Elastic Container Registry (ECR) in EKS on AWS EC2
  • Runtime Security
    • Introduction to Deepfactor Runtime Security
    • Deepfactor CLI Reference
    • Kubernetes workload
      • Run your Kubernetes workload with Deepfactor
      • Install Deepfactor Mutating Webhook
      • Configure Deepfactor Kubernetes admission webhook
      • Install Deepfactor K8s webhook on EKS Fargate
      • Selecting the pods you want to run with Deepfactor
      • Configuring application name, component name and component version in K8s webhook
      • Install Deepfactor mutating admission webhook using Argo CD
      • Install Deepfactor portal & webhook using Argo CD and vault
      • Use image pull secret for Runtime images
    • Containers/Other orchestration platforms
      • Run your Container Images with Deepfactor
      • Run containers in ECS with Deepfactor
    • Non-containerized workloads
      • Running non-containerized applications with Deepfactor

Deepfactor Platform

  • Introduction to Deepfactor
  • Alert Policies
  • Alert States and Triaging Flows
  • Deepfactor’s Correlation Capabilities
  • Organization and Teams
  • Role Based Access Control
  • Insights Knowledge Base
    • Privilege Separation and Privilege Dropping
    • Buffer Overflow Alerts
  • Knowledge Base
    • Deepfactor scan errors
    • K8s Webhook & Runtime Troubleshooting Guide
    • Tools for viewing CycloneDX and SPDX SBOMs
    • Graceful handling of pod restarts
    • Deepfactor telemetry events
    • Deepfactor Instrumentation Warning Messages
    • Best Practices for running your applications with Deepfactor in production environments
    • Golang Specific Notes
    • How to access Deepfactor Portal in different AWS subnet types
    • How the Deepfactor Management Portal Communicates With The Outside World
    • Language Specific Agents (LSA)
    • Mixed libc environments
    • Sensitive Information and Secrets in Process Environment Remediation
    • Running HAProxy with Deepfactor
    • Augmenting Alert Evidence with Runtime Stack Traces
  • FAQs
    • General FAQs
    • Open Source Disclosure

Integrations

  • Single Sign On (SSO) for authentication to Deepfactor
  • Integrate Jira with Deepfactor
  • Integrate Slack with Deepfactor
  • Okta
  • Deepfactor HTTPS webhook

Self managed Deepfactor portal

  • Deepfactor Portal architecture & deployment options
  • Install Self managed Deepfactor portal
    • Kubernetes Cluster
      • Prerequisites for deploying Deepfactor portal in Kubernetes Cluster
      • Deploying Deepfactor Portal in your Kubernetes Cluster
      • Install Deepfactor portal using Helm
      • Customizing Deepfactor portal deployment
        • Customizing your Deepfactor Portal Deployment in K8s
        • Deploy Deepfactor Portal With Resource Limits
        • Deploying Deepfactor Portal using external IP
        • Deepfactor Portal Installation with Existing Ingress Controller
    • AWS EC2
      • Prerequisites for installing Deepfactor Portal in AWS Cloud
      • Deploying Deepfactor on AWS using CFT
      • Install AWS Certificate Manager(ACM) certificate on Deepfactor portal EC2 instance
    • VMWare vSphere
      • Deepfactor Portal Proxy Configuration for OVA deployments
      • Prerequisites for deploying Deepfactor portal in VWware vSphere
      • Deploying Deepfactor on VMware vSphere
  • Manage Deepfactor Portal
    • Using Deepfactor APIs
    • Managing Users
    • Updating your Deepfactor Portal
    • Updating Deepfactor portal certificate
  • Deepfactor Portal Certificate
    • Generate certificate using cert-manager for Deepfactor portal
    • Create self-signed certificate for Deepfactor Portal on your K8s cluster
    • Create AWS Private CA Certificate for Deepfactor Portal on your K8s cluster
    • Create Let’s Encrypt certificate for Deepfactor Portal on your K8s cluster

Release Notes

  • Deepfactor Release Notes
  • Home
  • Docs
  • Deepfactor Platform
  • Insights Knowledge Base

Privilege Separation and Privilege Dropping

Privilege separation/dropping are techniques that can be used to limit the capabilities available to an attacker if they are able to compromise an application. By decomposing an application into functionality blocks, each with a set of well-known privilege requirements, an attacker can be “walled off” into a block with little ability to make further lateral movements (or further application compromise).

For example, consider the common case of an internet-facing web server. Root or administrator privilege may be required for the server to open ports 80 and 443 for accepting incoming connections. If the server retains this privilege for the duration of its run, an attacker who is able to successfully exploit a vulnerability in the server would find themselves in control of an application with essentially unlimited privileges on the machine where the server is running.

If, instead, the application was written using privilege separation and/or privilege dropping, root privileges could be removed after opening the listening socket. This means that if an attacker exploits a vulnerability after connecting to the server, the only privileges they would have available would be the
reduced set of privileges needed by the server for basic request servicing functionality.

Privilege separation and privilege dropping are most easily architected during initial application development; by planning ahead of time, a development team can outline, for each block of functionality, which privileges are the minimum set required for the application to function. Applying privilege separation or privilege dropping to an already existing application may be more challenging as a thorough inspection of the application may be required to both discover the functional blocks as well as the minimal set of privileges required for each block.

Privilege separation is typically accomplished by enforcing a process boundary between functional blocks; in the example above, the web server might fork and then re-exec itself after changing its UID to a lower-privileged user after the initial incoming client request is accepted in the parent process. If any communication is needed between parent (more privileged) and child (less privileged) processes, socket pairs or named pipes can be used.

Privilege dropping can be accomplished in the following ways:

  • Using capabilities frameworks like SELinux, AppArmor, or seccomp/seccomp-bpf
  • Changing to a lower privileged user (such as the “nobody” user)
  • Using chroot or jail-like functionality available to the application

References: https://en.wikipedia.org/wiki/Privilege_separation

Was this article helpful?
Still stuck? How can we help?

How can we help?

Updated on May 30, 2023

Powered by BetterDocs

Deepfactor Icon

Deepfactor is a next-gen application security platform, using static container scan data + runtime analysis to prioritize vulnerabilities to those representing true risk to a business—based on reachability, runtime usage, deployment context, and exploit maturity.

Product Pricing Resources Company Documentation Login

SUBSCRIBE TO OUR NEWSLETTER!

Sign Up
LinkedIn Icon YouTube Icon GitHub Icon Twitter Icon

© 2025 Deepfactor, Inc. All Rights Reserved.

Privacy Statement | Terms of Service | Open Source Disclosure