
WHITEPAPER

Next-Generation  
Container Runtime Security
Implementing effective next-generation 
container runtime security in Kubernetes 
and cloud native applications.



 // Contents

Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Challenges of Implementing Effective Container Runtime Security . . . . . . . . . . . . . . . . .

 What Is Container Runtime Security? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Five Reasons to Implement Container Runtime Security . . . . . . . . . . . . . . . . . . . . . . . . . .

  1 - Detect and Mitigate Real-Time Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  2 - Identify and Remediate Vulnerabilities Before Deployment . . . . . . . . . . . .

  3 - Meet Compliance and Regulatory Requirements . . . . . . . . . . . . . . . . . . . . . . . .

  4 - Defense-in-Depth Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  5 - Runtime Context for Development, QA, and Security . . . . . . . . . . . . . . . . . . .

 Key Challenges to Implementing Traditional Runtime Security . . . . . . . . . . . . . . . . . . .

Key Characteristics of Next-Generation Container Runtime Security . . . . . . . . . . . . . . . . . . . .

 Increased Visibility and Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Flexible Deployment Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Maintaining Speed Through Integration Into Dev Pipeline . . . . . . . . . . . . . . . . . . . . . . . .

 Reducing SCA Alert Fatigue Using Runtime Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Achieving Compliance Objectives With Runtime Security Controls . . . . . . . . . . . . . .

Deepfactor’s Approach to Container Runtime Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Increased Visibility Through API Interception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Deployment Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Correlation With AppSec Tooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Compliance Customer Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 About Open Lending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Using Container Runtime Security in Dev and Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Using Container Runtime Security to Save Security and Engineering Time . . . . . .

 Regulatory Compliance in Kubernetes and Cloud Native Applications . . . . . . . . . . .

	 The	Engineering	Benefits	of	Deepfactor’s	Increased	Visibility	. . . . . . . . . . . . . . . . . . . .

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

4

4

4

4

4

4

5

5

5

7

7

7

7

8

8

9

9

12

12

14

16

16

16

16

17

17

18

NEXT-GENERATION CONTAINER RUNTIME SECURITY 2



 // Executive Summary

This whitepaper provides a comprehensive review of the challenges, advantages, 

and characteristics of implementing effective next-generation container runtime 

security in Kubernetes and cloud native applications. In addition to perimeter 

protection such as Web Application Firewalls (WAF), security teams need to 

observe and detect high-risk runtime behaviors in containers to effectively 

mitigate new threats and ensure compliance with regulatory standards such as 

SOC 2 Type 2 and PCI. 

Container runtime security is vital to detecting insecure behaviors across file 

operations, network communications, process execution, and memory usage. 

Container runtime security is not only crucial during the development and 

testing phases for vulnerability identification and remediation before deployment 

to production but also for continuous monitoring of applications running in 

production. It provides real-time attack detection and mitigation, helps meet 

compliance and regulatory requirements, and provides runtime context for 

development, QA, and security.

Traditional runtime security tools are often challenging to deploy in modern 

cloud native environments because they have limited deployment options and 

no correlation with AppSec tools used by developers and in production. Modern 

solutions like the Deepfactor Developer Security platform overcome these issues 

with increased visibility and protection, flexible deployment models and most 

importantly, a way to improve actionability in security remediation by correlating 

behavior and usage with vulnerabilities found in the CI pipeline (by Deepfactor or 

by other tools).

Deepfactor’s approach to container runtime security is a next-generation solution 

that provides analysis during development and testing, as well as monitoring 

during production. Using a patented API Interception technique, Deepfactor 

provides rich insights into application behavior without requiring intrusive agents, 

sidecars, or kernel modifications.

NEXT-GENERATION CONTAINER RUNTIME SECURITY 3

https://www.deepfactor.io/wp-content/uploads/2022/05/DeepFactor-Whitepaper-Observing-Application-Behavior-Using-API-Interception.pdf


 // The Challenges of Implementing Effective 
Container Runtime Security  

What is Container Runtime Security? 

Before we delve into the details of container runtime security, let’s define the exact scope of what we are talking about.

Container runtime security means monitoring and analyzing activities within containers, enabling the detection 

of insecure behaviors across various facets like file operations, network communications, process execution, and 

memory usage. Ideally, runtime security controls should be integrated throughout the application development 

process, identifying and addressing security risks during development and testing stages prior to deployment in 

production environments. 

Nonetheless, organizations should also adopt a defense-in-depth approach, continuously monitoring applications 

in production to guard against both new zero-day vulnerabilities and known vulnerabilities that might have been 

overlooked during development. By actively observing high-risk container behavior in real time, DevOps and security 

teams can promptly identify and respond to potential security threats, while mitigating application vulnerabilities. 

This approach facilitates comprehensive visibility into containerized workloads, enabling the detection of malicious 

activities, unauthorized access attempts, anomalous behavior, and other indicators of compromise.

5 Reasons to Implement Container Runtime Security 

1.  Detect and Mitigate Real-Time Attacks

Container runtime security facilitates the real-time observation of container processes, allowing for the detection 

of malicious activities. By analyzing file operations, network communications, process execution, and memory 

usage, organizations can promptly identify and respond to security threats, preventing potential data breaches or 

unauthorized actions. 

For example, consider a malicious component that was accidentally imported into an application by a developer due 

to typosquatting or repo hijacking. This component might make unwanted network connections to command-and-

control servers, exposing the organization to data exfiltration. Leaking sensitive customer data may lead to reputation 

loss, loss of sales, or possible civil liabilities for the organization.

2.  Identify and Remediate Vulnerabilities Before Deployment

Container runtime security enables organizations to effectively manage vulnerabilities within their cloud native 

applications. By continuously monitoring container activities in dev, test, and staging environments, it becomes 

easier to identify and remediate security flaws before applications are deployed to production. In some cases, runtime 

analysis can help identify security risks in application or third-party code that SAST or SCA tools may not detect. This 

greatly reduces the number of vulnerabilities reaching production, as well as attack incidents.

3.  Compliance and Regulatory Requirements

Many industries have specific compliance and regulatory requirements regarding data security and privacy. Container 

runtime security helps organizations meet these requirements by implementing the necessary controls and 

monitoring mechanisms, ensuring that applications adhere to the required standards, and protecting sensitive data. 

With container runtime security, an application’s behavior can be comprehensively cataloged to ensure that sensitive 

files are not accessed, and if they are, when that happened. A good container runtime security tool will also provide 

the developer and application security teams with contextual data (like source code modules, file names, and line 

numbers that triggered the data access).

NEXT-GENERATION CONTAINER RUNTIME SECURITY 4



4.  Defense-in-Depth Approach

Incorporating container runtime security into cloud native applications provides a defense-in-depth approach to 

application security. It adds an additional layer of protection alongside other security measures, such as secure coding 

practices, network security, and access controls. This multi-layered approach reduces the risk of successful attacks 

and strengthens the overall security posture of cloud native applications.

5.  Reduce Software Composition Analysis Noise and False Positives  

     With Runtime Usage and Reachability

Container runtime security provides valuable runtime application behavior context to developers, QA, and security 

teams, enabling them to improve the performance, functionality, and security of the application. For example, a good 

container runtime security tool can track which modules and dependencies are actually called by the application (e.g., 

which modules are loaded into memory and which modules may have been imported previously, now unused and 

forgotten). This information can be used to remove unused OS packages, application components, and dependencies 

that are not used, thereby reducing the attack surface for security, eliminating the need to test those components, 

reducing the size of the application, and potentially improving performance.

Key Challenges to Implementing  
Traditional Runtime Security 

Deployment 

Traditional runtime security tools originated as host-based agent 

implementations, deployed on the physical server running the 

application workload. However, with the emergence of Kubernetes, 

microservices-based architectures, immutable infrastructure, 

and ephemeral application environments, full agent-based 

architectures on each host have become impractical for cloud 

native applications. This approach hinders development speed 

to the extent that DevOps teams resist implementing runtime 

security measures. Modern container runtime security tools 

address these challenges by utilizing sidecar containers or 

lightweight plug-ins integrated directly into container images. This 

simplifies and expedites the implementation of runtime security 

measures. It’s important to note that some runtime security tools 

may not be compatible with managed Kubernetes platforms or 

deployments without access to the underlying host, such as AWS 

Fargate, AWS ECS or Docker Swarm.

Integration and Correlation With AppSec Tooling 

Runtime security tools are often inadequately integrated into the 

continuous integration (CI) pipeline and lack correlation capabilities 

with AppSec controls such as static application security testing 

(SAST) and software composition analysis (SCA) scanning tools. This 

gap inhibits the seamless integration of runtime security measures 

with the overall application security framework, limiting the ability 

to proactively identify and address vulnerabilities before they reach 

the production environment.

According to a Gartner® 

report, “With modern cloud-

native applications, it can 

be difficult if not impossible 

to use a traditional host-

OS-based agent approach. 

In some cases, the DevOps 

product teams won’t accept 

them, and in other cases, 

the value of runtime visibility 

into ephemeral workloads is 

not offset by the operational 

overhead of deploying and 

managing agents.” 

-  Gartner

 Market Guide for Cloud-Native Application 
Protection Platforms 

 Published 14 March 2023 - ID G00785751.

 GARTNER is a registered trademark and service mark 
of Gartner, Inc. and/or its affiliates in the U.S. and 
internationally and is used herein with permission. All 
rights reserved.

NEXT-GENERATION CONTAINER RUNTIME SECURITY 5



Maintaining Agility and  

Application Delivery Speed 

Traditional runtime security tools were initially intended for Ops 

teams to identify and safeguard applications from attacks in 

production environments. However, with the advent of DevSecOps 

principles, the responsibility for discovering and addressing 

security vulnerabilities has shifted left in the development process, 

giving development and QA teams the primary responsibility for 

improving the security of their applications rather than security 

teams. Traditional runtime security tools are often not accessible 

to development and QA teams and require leaving their native 

development and testing tools, resulting in constant requests to 

the Ops team and slowing down of the development process.

According to Gartner, “Adversarial 

relationship between developers 

and security: Security teams are 

perceived as slowing down modern 

DevOps style development. 

Security controls weren’t designed 

for the speed and scale of cloud-

native applications and weren’t 

designed with the developer as the 

central customer (not security). The 

result historically has been poorly 

integrated testing that required 

the developer to leave their 

development environment, slowed 

development and often wasted 

developer time with false positives 

or asking them to remediate low-

risk vulnerabilities.” 

-  Gartner

 Market Guide for Cloud-Native Application 
Protection Platforms 

 Published 14 March 2023 - ID G00785751.

NEXT-GENERATION CONTAINER RUNTIME SECURITY 6



 // Key Characteristics of Next-Generation 
Container Runtime Security

Increased Visibility and Protection  

Modern or next-generation container runtime security solutions 

have expanded their scope to go beyond basic system call 

monitoring. They now include the capability to observe higher-

level operating system API behavior, which is where many new 

vulnerabilities, such as those found in OpenSSL and Log4J, often 

reside. This contrasts with other tools that monitor “too low” (at the 

system call level) to be actionable by the developer.

Flexible Deployment Models  

Cloud native applications are deployed using various models, 

such as self-managed Kubernetes, managed Kubernetes (e.g., 

Amazon EKS Fargate), non-Kubernetes cloud platforms (like 

AWS ECS, Docker Swarm, Lambda), and traditional monolithic 

non-containerized applications. DevOps teams often employ 

a mix of these models, necessitating seamless integration of 

runtime security tools across the entire environment. Modern 

container security solutions offer flexibility by supporting multiple 

deployment models, including mutating webhooks, embedding 

the security tool into container images, or launching it through 

scripts or command lines. This adaptability ensures that container 

runtime security measures can be effectively implemented 

regardless of the deployment model employed.

Maintaining Speed Through Integration Into the 
Dev Pipeline   

Next-generation container runtime security tools must integrate 

into the existing dev and test pipeline and native tools to avoid 

slowing down the process. Manual review and intervention by the 

security team or gating of builds that significantly delays releases 

undermines the objectives of DevOps teams. To maintain the 

accelerating pace of development, runtime analysis and security 

testing should be integrated into developer and QA workflows 

to surface vulnerabilities automatically and file tickets in the 

dev and QA systems with all the relevant information necessary 

(stack traces, usage information, links to CVEs and remediation 

suggestions, for example) to remediate the vulnerabilities so there 

are no delays to the build process. 

According to Gartner, “There is 

a desire to integrate security 

and compliance testing 

seamlessly and transparently 

into modern DevOps 

(referred to as DevSecOps) 

in a manner that balances 

security and speed and doesn’t 

unnecessarily slow down 

digital innovation. Information 

security’s role shifts to one 

of providing the guardrails 

across the entire development 

pipeline, not gates. An analogy 

would be a racetrack where 

the guardrails are encountered 

by the driver only if there 

is a serious issue. Likewise, 

developers are allowed to 

innovate at their desired speed 

with little or no friction from 

security, unless a critical risk 

issue is identified.” 

-  Gartner

 Market Guide for Cloud-Native Application 
Protection Platforms 

 Published 14 March 2023 - ID G00785751.

NEXT-GENERATION CONTAINER RUNTIME SECURITY 7



Reducing SCA Alert Fatigue  
Using Runtime Correlation   

Modern container runtime security tools leverage their unique 

visibility into the behavior of applications to enhance application 

security. For instance, they can assist SCA tools in prioritizing which 

vulnerabilities should be addressed first based on their runtime 

usage or reachability, down to the level of which class was loaded 

by a certain vulnerable dependency.

Achieving Compliance Objectives With  
Runtime Security Controls  

Additionally, container runtime security tools play a vital role in 

ensuring and validating compliance with regulatory requirements 

and standards like SOC 2, NIST, ISO, PCI-DSS, and others. These 

tools enable the implementation of necessary security controls to 

monitor and generate audit logs for activities such as file transfers, 

use of encryption, privilege escalation, and the presence of critical 

vulnerabilities in the application.

NEXT-GENERATION CONTAINER RUNTIME SECURITY 8

Using Deepfactor to Prioritize Alerts

In this sample HTTP-based web app, Deepfactor 

identified 569 of 1336 OS (container image) 

packages and components as having known 

vulnerabilities based on the initial SCA scan of 

the container images comprising the application. 

Out of these 569, 64 had a CVSS score of > 8.0. 

During the development, testing, and production 

stages, after the app was run for several hours with 

Deepfactor enabled, 11 of these 64 packages were 

observed to be used (loaded into memory). This 

filtering process allows the user to prioritize the 11 

vulnerabilities contained in code they actually used 

that pose a high risk.



 // Deepfactor Container Runtime Security  

Overview 

The Deepfactor Developer Security platform offers a modern approach to container runtime security that provides 

runtime security analysis during development and testing, runtime correlation with SCA and container scanning, and 

runtime monitoring during production.

Runtime Analysis During Dev and Test  

Deepfactor identifies unknown vulnerabilities, those that may not yet be CVEs and therefore might go undetected 

by SAST or SCA tools, by analyzing running applications in the development and test environments before releasing 

code to production. Based on deep visibility of every thread and process, Deepfactor can detect application risks 

based on customizable policies that monitor for vulnerabilities such as insecure execution, file system behavior, 

remote code execution, and buffer overflows that can lead to data breaches or be used by zero-day attacks. A 

configurable policy engine, as shown in Figure 1, provides the ability to ensure rules defined by the AppSec team are 

being met.

Figure 1   Deepfactor detecting violations of runtime policy rules

NEXT-GENERATION CONTAINER RUNTIME SECURITY 9



Deepfactor observes application behavior to determine reachability and runtime usage of dependencies as well as 

packages installed in container images. It then correlates this information with SCA and container scan output, as 

shown in Figure 2. This helps AppSec teams prioritize which vulnerable components need to be fixed and which ones 

could be considered for removal based on lack of usage, resulting in a highly effective way to rapidly resolve CVEs. To 

learn more, read this whitepaper: SCA 2.0: A Framework to Prioritize Risk, Reduce False Positives, and Eliminate SCA 

Alert Fatigue.

Figure 2   Prioritization of SCA results with runtime usage analysis

NEXT-GENERATION CONTAINER RUNTIME SECURITY 10

https://www.deepfactor.io/sca-2-0-a-framework-to-prioritize-risk-reduce-false-positives-and-eliminate-sca-alert-fatigue/
https://www.deepfactor.io/sca-2-0-a-framework-to-prioritize-risk-reduce-false-positives-and-eliminate-sca-alert-fatigue/


Runtime Monitoring During Production  

Deepfactor’s approach to container runtime security monitors applications in production environments to detect 

runtime security risks in filesystem, network, process, and memory behavior including exposing sensitive information, 

privilege escalation, and prohibited network communications. Runtime security in production environments helps 

demonstrate compliance (SOC 2, etc.) and uncovers indicators of compromise by pinpointing suspicious file, network, 

and memory behaviors. These risks can be configured to raise alerts if seen in runtime, based on policies set by the 

AppSec team, as shown in Figure 3.

Figure 3   Configurable runtime alert policy rules

NEXT-GENERATION CONTAINER RUNTIME SECURITY 11



Increased Visibility Through API Interception

Deepfactor has developed a unique, patented approach to API interception that provides rich insight into application 

behavior to help developers, QA engineers, and security teams find and fix vulnerabilities faster. Deepfactor 

dynamically injects a small library into the user space of each container’s operating system that monitors hundreds 

of system calls, library calls, and Web APIs. In addition, Deepfactor auto-detects languages and inserts language-

specific interception that provide a deeper level of analysis (to provide language-aware stack traces for Java and 

Python, for example). Deepfactor is able to correlate the low-level telemetry information with higher level language-

specific information to not only detect vulnerabilities but also provide pinpoint locations in the code where the 

developer can focus. This makes it easier for developers to identify the root of the issue and remediate it quickly, 

without having to manually triage and debug the issue. This approach not only saves developers time but also 

motivates them to adopt the tool since it provides results with minimal effort. 

Read the whitepaper Observing Application Behavior via API Interception for more detailed technical information.

Deployment Flexibility

With a single command, Deepfactor seamlessly loads a robust language-agnostic library into cloud native workloads 

and environments to provide comprehensive container runtime security. Deepfactor can be deployed in the cloud 

or on-premises with self-managed Kubernetes, managed Kubernetes (e.g., EKS Fargate), non-Kubernetes container 

orchestration tools (e.g., Amazon ECS, Docker Swarm, Lambda), and traditional monolithic non-containerized 

applications. With Deepfactor, there are no host-based agents to install, no sidecar containers, and no kernel modules 

to install, simplifying and accelerating deployment.

For example, to scan a container image, populate an SBOM for that container, and show vulnerabilities in the 

components in that container, a single command (shown in Figure 4) can be run. This will scan the container and 

make the results available in the Deepfactor management portal. The SBOM can then be exported into a variety of 

standardized formats. 

Figure 4   Scanning a container image to produce an SBOM and SCA report

NEXT-GENERATION CONTAINER RUNTIME SECURITY 12

https://www.deepfactor.io/observing-application-behavior-via-api-interception/


Kubernetes Deployments

For Kubernetes deployments, Deepfactor provides a mutating admission controller (shown in Figure 5) which 

seamlessly adds Deepfactor’s interception library into the application workloads. With this more seamless approach, 

the user does not need to modify their applications or their deployment YAML files (or run the manual scan command 

shown in Figure 4, since Deepfactor deploys a scan pod which automatically scans the container images used in 

application pods). Deepfactor provides flexible configuration options for the webhook that allow the user to select 

which of the workloads should be observed with Deepfactor and how pods should be grouped into applications. For 

more information on how to observe K8s workloads with Deepfactor, refer to this article.

Non-Kubernetes Container Orchestration Tools

For those who use other container orchestration tools like AWS Elastic Container Service (ECS), Docker Swarm or even 

running simple container images, Deepfactor provides a Dockerfile which does a multi-stage build and generates 

a Deepfactor-enabled container image. This instrumented image can then be run anywhere, such as AWS ECS or 

Docker Swarm and the instrumented container will send telemetry to the Deepfactor portal. This strategy provides 

portability across different container orchestration platforms. For more information on how to add Deepfactor to your 

container images, please refer to this article.

If the container image has already been built (but lacks Deepfactor), it can be run using the Deepfactor CLI as 

shown in Figure 6. For more information on how to run your pre-built container images with Deepfactor, please 

refer to this article.

Figure 5   Installing Deepfactor’s Kubernetes admission controller 

Figure 6   Running a prebuilt container image using dfctl 

NEXT-GENERATION CONTAINER RUNTIME SECURITY 13

https://www.deepfactor.io/docs/install-deepfactor-mutating-webhook/
https://www.deepfactor.io/docs/run-your-container-images-with-deepfactor/#adding-deepfactor-to-your-container-image
https://www.deepfactor.io/docs/run-your-container-images-with-deepfactor/#using-the-dfctl-run-command


Monolithic Application Deployments 

Deepfactor also supports monolithic/non-containerized applications by using the ‘dfctl’ command line tool, as shown 

in Figure 7. This command launches the specified command line with Deepfactor; runtime analysis in this case is 

grouped under the “my application” hierarchy in the Deepfactor management portal.

Correlation With AppSec Tooling

Unlike traditional container runtime security tools, the Deepfactor Developer Security platform correlates runtime 

usage behavior to filter and prioritize vulnerability alerts, as shown in Figure 8. Deepfactor’s correlation engine 

observes the application while it’s running in test, dev, staging, and production environments to determine whether 

vulnerable dependencies and packages are actually loaded in memory and used by the application at runtime. This 

provides valuable context that helps prioritize vulnerabilities, accelerate remediation, and offer guidance on slimming 

down unused components.

Figure 7   Running a monolithic/non-containerized application using dfctl

Figure 8   Continuous runtime and correlation-based reports

NEXT-GENERATION CONTAINER RUNTIME SECURITY 14



Log4j Example: Dependency Runtime Context

Bank of Anthos is a sample HTTP-based web app created by Google that simulates a bank’s payment processing 

network, allowing users to create artificial bank accounts and complete transactions. The application contains 

nine common microservices and is written in a combination of Python and Java with PostgreSQL databases. The 

application contains many known vulnerabilities that make it ideal to use as an example application to illustrate the 

importance of prioritizing and filtering vulnerabilities.

In December, 2021, the Log4j vulnerability surfaced. The Deepfactor platform determines which containers (or 

subcomponents) have the vulnerable version of Log4j installed.

In the Dependencies tab, you can see that the Bank of Anthos application has the Log4j vulnerability in three of its 

services. Deepfactor detected that all of these services indeed loaded the Log4j dependency into memory at runtime.

Deepfactor provides even deeper insight into the usage of this dependency. In the Log4j dependency details page, 

Deepfactor provides the list of classes within Log4j which were actually used at runtime. Developers can search for 

the classes where the specific CVE exists and determine if those classes are being used by their application. In the 

case of Log4j, the CVE didn’t have that class information, which means the fact that Log4j loaded at least one class 

should be enough reason to remediate the vulnerability. For CVEs where this information is available, a developer 

could use it to further prioritize remediation.

Read the Deepfactor Blog on Log4j.

NEXT-GENERATION CONTAINER RUNTIME SECURITY 15

https://www.deepfactor.io/log4j-vulnerability-the-latest-information-your-software-developers-need-to-know-about-log4shell/


 // Compliance Customer Case Study: 
Open Lending

Open Lending (NASDAQ: LPRO) provides loan analytics, risk-based pricing, risk modeling, and default insurance to 

auto lenders throughout the United States. For 20 years, Open Lending has been empowering financial institutions 

to create profitable auto loan portfolios with less risk and more reward. Before going public in 2020, Open Lending 

ranked among Austin’s fastest-growing, privately held companies. 

Using Runtime Security  
in Dev and Test 

Open Lending uses Deepfactor across dev, 

test, and production environments. In dev 

and test, the focus is on eliminating known 

vulnerabilities before the application is shipped 

to production. There is also an opportunity to 

remove any unused packages or dependencies 

to slim down and clean up the containers as 

much as possible to reduce the attack surface 

of the application.

In the on-demand webinar Container Runtime 

Security: Detect Malicious Application 

Behavior & Comply with SOC 2, Jeff shares 

best practices and lessons learned based on 

Open Lending’s implementation of container 

runtime security and their compliance program.

Using Container Runtime Security 
to Save Security and  
Engineering Time  

Open Lending uses the container runtime 

security functionality provided by Deepfactor 

to monitor multiple applications and clusters 

for security incidents that require further 

investigation. Deepfactor correlates events 

across all their application components 

and clusters to determine whether there is 

a potential security incident and provides 

information that the security team uses to 

prioritize investigations and remediation 

activity. With all the runtime context correlated 

within the alert, engineers don’t have to waste 

any time combing through logs and history 

to determine the cause of the issue and 

recommended remediation steps.

“If you have a set of tools or dependencies within 

an application and unused components have 

vulnerabilities, you should ask yourself if you 

truly need that component within that image or 

artifact. There’s an opportunity to pull that out 

and reduce risk.” 

-  Jeff Deverna

 Vice President of Cyber Security 
Open Lending

“Having the proper runtime security tool in 

place will make it easier for your security and 

engineering teams to collaborate and assess your 

application posture.” 

-  Jeff Deverna

 Vice President of Cyber Security 
Open Lending

NEXT-GENERATION CONTAINER RUNTIME SECURITY 16

https://www.deepfactor.io/container-runtime-security-detect-malicious-application-behavior-and-comply-with-soc-2/
https://www.deepfactor.io/container-runtime-security-detect-malicious-application-behavior-and-comply-with-soc-2/
https://www.deepfactor.io/container-runtime-security-detect-malicious-application-behavior-and-comply-with-soc-2/


Regulatory Compliance  
in Kubernetes and  
Cloud Native Applications 

Open Lending is required to comply with 

the SOC 2 Type 2 regulation. As a result, 

they needed to implement a solution that 

could monitor the runtime security of 

applications in the production environment 

and detect threats such as privilege escalation, 

unauthorized file transfers, and file changes. In 

addition, all access and modifications around 

file, network, memory, and API calls need to 

be auditable to prove compliance with the 

relevant regulatory requirements. Deepfactor 

provides a mapping of all security alerts that 

includes which, if any, specific sections of 

specific requirements a particular vulnerability 

may impact. Using this information, the Open 

Lending security team can raise the priority to 

fix a vulnerability that may negatively impact 

their upcoming audit, avoiding regulatory 

penalties or negative audit findings.

The Engineering Benefits  
of Increased Visibility  
With Deepfactor 

As part of its container runtime security 

capabilities, Deepfactor observes hundreds 

of application event types spanning file, 

network, memory, and API calls that not only 

help uncover high-risk behavior and malicious 

activity but also uniquely valuable information 

to the engineering team about what the 

application is doing in production. Developers 

can use that same information to improve their 

application performance and functionality 

or reduce the attack surface by slimming 

down the application based on the runtime 

information they have access to through 

Deepfactor.

“A lot of auditors are starting to get more 

integrated within Kubernetes and cloud native 

environments and how what you have may or 

may not translate from legacy or traditional 

environments such as virtual machines and 

physical servers.” 

-  Jeff Deverna

 Vice President of Cyber Security 
Open Lending

“There are things that shouldn’t happen if 

you are in a containerized or Kubernetes 

environment. Did someone drop a shell, make 

a permissions change on a file or executable? 

There shouldn’t be changes made to production 

containers without approvals and following 

change management procedures. Container 

runtime security can help you reinforce those 

best practices.” 

-  Jeff Deverna

 Vice President of Cyber Security 
Open Lending

NEXT-GENERATION CONTAINER RUNTIME SECURITY 17



WP.0817.V01

Deepfactor is a developer security platform that helps security and engineering teams find and fix application vulnerabilities 
faster and more efficiently.  For more information, follow Deepfactor on Twitter or LinkedIn or contact us.

©2023 Deepfactor, Inc. Deepfactor is a trademark of Deepfactor, Inc. All other brands and products are the marks  
of their respective holders.

deepfactor.io

To see all of the  
Deepfactor Developer Security  
capabilities today, you can:

Check out this related webinar, with guest speaker  
Jeff Deverna, Vice President, Cyber Security,  
Open Lending

Request a Demo

Start a Free Trial

 // Conclusion

In a rapidly evolving digital landscape, container runtime security remains pivotal for organizations to ensure 

comprehensive security, mitigate potential vulnerabilities, and achieve regulatory compliance. As traditional 

runtime security tools grapple with adapting to the complexity of cloud native applications, Deepfactor is purpose-

built for cloud native container runtime security, delivering extensive visibility, flexible deployment models, and 

comprehensive correlation with application security tools and compliance frameworks.

Deepfactor’s unique API interception technology, devoid of intrusive agents or kernel modifications, dramatically 

simplifies the deployment of container runtime security. Its unique runtime analysis and security testing approach 

aligns with DevOps principles and workflows, delivering security that doesn’t impede the agility and speed of 

application delivery. By providing critical insights into application’s runtime usage and reachability, vulnerabilities can 

be efficiently prioritized and remediated, reducing the attack surface, bolstering security by burning down CVE debt, 

and accelerating the delivery of resilient applications.

Real-world case studies, like Open Lending, highlight the effectiveness of the Deepfactor approach, with the solution 

helping to identify vulnerabilities, save precious engineering time, and maintain regulatory compliance. By effectively 

integrating security into the development process, modern container runtime security solutions like Deepfactor 

are paving the way for safer, more secure cloud native applications and Kubernetes environments. As the digital 

landscape continues to evolve, so too will the role and importance of next-generation container runtime security.

https://twitter.com/DeepFactor_inc
https://www.linkedin.com/company/deepfactor/
https://www.deepfactor.io/contact
https://www.deepfactor.io/container-runtime-security-detect-malicious-application-behavior-and-comply-with-soc-2/
https://www.deepfactor.io/request-demo/
https://www.deepfactor.io/saas-early-access/
https://www.deepfactor.io/observing-application-behavior-via-api-interception/

